Context Aware Software Stacks for Mobility

Composive.ai Overview

Naci Dai, Deniz Memis, Burak Saglam
Eteration
Istanbul, Turkey
{naci.dai, deniz.memis, burak.saglam}@eteration.com
Outline

• Background
 – AD software: System Design Approaches
 – Contextual AI & Explainable AI
• Context & Context Awareness for AD
• Composive.ai: Goals
• Model Driven Adaptive Software Stacks
• Roadmap
Background

- AD software performs well in a specific context.
 - Dependent on training data and models
 - Unexplainable bias.
 - Underperforms in corner cases.
- The AI Next Campaign (DARPA) is announced:
 - A third wave that brings forth machines that understand and reason in context.

Contextual AI & Explainable AI

PILLARS OF CONTEXTUAL A.I.

Intelligible
- Able to explain what it knows, how it knows, and what it’s doing.

Adaptive
- Able to meet user’s expectations in different environments.

Customizable
- Able to be fully controlled by the user.

Context-Aware
- Able to perceive at the same level as a human does.

AI System
- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand

DoD and non-DoD Applications
- Transportation
- Security
- Medicine
- Finance
- Legal
- Military

- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

User

Relation to the structure of the models of the system

Contextual AI: The Next Frontier of Artificial Intelligence, Oliver Brdiczka

Explainable Artificial Intelligence (XAI), Dr. Matt Turek
Context Variation Example

- Humans are pretty successful at understanding the context changes
- The design and capabilities (sensing, detecting, tracking, planning etc.) of AD software should match.

Urban Driving (Organized vs Unorganized) Parking Lot Driving (Indoor vs Outdoor)
Context & Context Awareness for AD

- Sensory
 - Distance (Lidar)
 - Speed (Radar)
 - Object detection (Camera, image processing, ML)
 - Orientation (SLAM, 3D Maps)
- Behavior
 - Driver, Pedestrians, Other Drivers
- Environment
 - Traffic signs (Object detection, image processing)
- Mission
 - Purpose (park, cruise ..)
 - Destination
 - Planning
Composiv.ai Goals

• Change the **existing** state towards the **desired** state (i.e. from urban driving context to parking context).

• Ability to abstract **contextual** knowledge for AD.

• Ability to **modify** runtime code (vs. code-first black-box proprietary systems).
ROS2 System

ROS graph is a network
- ROS 2 elements (executables) and connections processing data together

[Diagram showing ROS nodes and connections]

Model Based Robotics in ROS2 ecosystem

RobMoSys:
- Enables the *composition* of robotics applications with managed, assured, and maintained system-level properties via *model-driven* techniques.

MROS:
- *The objective of MROS is to leverage the RobMoSys model-based approach at runtime*, to provide a solution for ROS2 systems, based on architectural self-adaptation driven *by ontology reasoning* on the architecture models.
Model Driven Context Aware Stacks

- **Existing Systems**
 - Reverse engineer
 - Metamodel Driven

- **Initial Model (View)**
 - Conforms to

- **Metamodel (low-level Viewpoint)**
 - Represents

- **Metamodel (Function-Level Viewpoint)**
 - Conforms to
 - Metamodel Driven

- **Initial Model (View)**
 - Represented

- **Adapted Model (View)**
 - Adapt
 - Deploy
 - Runtime Platform
Model-driven Approach with open-source AD stack
Modeling Existing AD Framework (Autoware)

Partial Autoware Node-Graph Diagram

ROS2 Based AD Model Concept

Model for a ROS2 runtime (i.e. Autoware)

Nodes (Processes)
- clustering
- lidar
- Image detector
- camera
- Object fusion
- point cloud filter
- point localizer
- Semantic mapper
- potential mapper
- route planner
- lane planner
- Vehicle pose
- lattice planner
- filtered point cloud
- waypoint follower

System / SubSystem

Topics
- Point Cloud
- objects
- Image objects
- Point objects
- filtered point cloud
- velocity
- Current velocity
- Sem. map
- potential. map
- ADAS Map Info
- pose
- waypoint

Entities (events/data)
- object
- ADAS Map Info
- map
- Point cloud
- Image
- pose
- velocity
- Vehicle control

Associations (pub/sub, req/reply)
- Node
 - Topic (pub)
 - Topic (sub)
 - Node

context
Composiv.ai Components

SDKs for Stack and Component Development

LiveUI
UI Stacks
Client Devices

LiveFlow
Flow Stacks
Cloud (MW) Platforms

LiveStream
Edge Stacks
Edge Devices

Context Awareness

Algorithm & Model Development

Feature Engineering

Model Driven Stacks

Stack (App & Service) Repositories

Stack Lifecycle and Trust Management

Sensor Ocean

Context Awareness

SDKs for Stack and Component Development

LiveUI
UI Stacks
Client Devices

LiveFlow
Flow Stacks
Cloud (MW) Platforms

LiveStream
Edge Stacks
Edge Devices

Context Awareness

Algorithm & Model Development

Feature Engineering

Model Driven Stacks

Stack (App & Service) Repositories

Stack Lifecycle and Trust Management

Sensor Ocean
Roadmap

• Architectural Definitions & Requirements Analysis (09/2021)
 – Autonomous Vehicles
 – Autonomous Driving Software Stacks

• CASSM v1 (01-03/2022)
 – Models and algorithms

• CASSM Edge Runtime Platform v1 (01-03/2022)
 – LiveStreams (Composive.ai)
 – ROS2/DDS

• Micro user interfaces and flows SDK v1 (01-03/2022)
 – LiveUI (Composive.ai)
 – LiveFlow (Composive.ai)

• Case Studies
 – Case Study I: Modeling studies based on open-source modular AD software stack.
 – Case Study II: Testing on a 1/10th scale RC car conforming to f1ftenth.org specs
Thank you for listening and for your attention.

We’d be glad to answer any questions...

Naci M. Dai
Chief Scientist

Deniz Memis
Engineer

Burak Saglam
PM