PANORover: Autonomous Driving System Development Platform

Marc Zeller | Siemens AG, Technology, Munich
Olexiy Kupriyanov | Siemens AG, Digital Industry Software, Nuernberg
Norbert Beck | Siemens AG, Digital Industry Software, Nuernberg

Eclipse SAAM Mobility 2021

Security | AI | Architecture | Modelling
Heterogeneous HW/SW Platform with AI

Use Case
Rover with automated braking and collision avoidance ADAS function

Function
- Avoid collisions by measuring distance
- Reduce speed when detecting traffic signs or pedestrians

Heterogenous Hardware and Software
- HW boards: Xilinx ZCU104, Arduino MEGA 2560, Mentor Calypso Board
- Perception: USB Camera, IR distance sensors
- HW accelerated AI based pedestrian detection
- Communication: CANBus and Ethernet (planned)
- SW: bare metal, Petalinux, Nucleus RTOS, AUTOSAR (VSTAR)
Heterogeneous HW/SW Platform with AI

Video
Safety Analysis using Component Fault Trees (CFTs)

Extension of classic fault trees with a component concept

- Fault trees trace back influences to a given hazard or failure
- Graphically explain causal chains leading to the hazard
- Focus on failure modes of an encapsulated system component
- One CFT per component contain more than one top event (instead of one ‘classic’ fault tree for each top event)

Challenge in heterogeneous systems

- Safety Of The Intended Functionality (SOTIF) must be considered (ISO 21448) in heterogeneous systems incl. AI
- Failures + functional insufficiencies must be considered in safety analysis

Solution

- Extension of the CFT methodology to describe cause-effect-relationships for failures & functional insufficiencies and system hazards
- Qualitative Safety Analysis of PANORover is performed using CFTs
 - To show that all hazards are mitigated sufficiently
 - Combined analysis of functional safety and SOTIF aspects
Safety Analysis using Component Fault Trees (CFTs)

Video
Thank you for your Attention!

Questions?

Contact: Dr. Marc Zeller | Siemens AG | marc.zeller@siemens.com

Special thanks to Maria Bonner and Lennart Killian

The research leading to these results has received funding from the Federal Ministry for Education and Research (BMBF) under grant agreement 01IS18047D and by Vinnova under registration number 2018-02228 in the context of the ITEA3 EU-Project PANORAMA.