

On the Containerization and Orchestration of RISC-V architectures for Edge-Cloud computing

Francesco Lumpp (University of Verona, Italy)

francesco.lumpp@univr.it

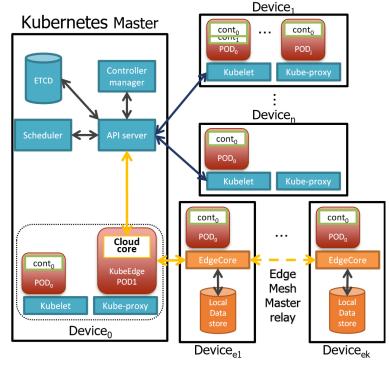
Oct. 17, 2023

Ludwigsburg, Germany

Kubernetes on RISC-V

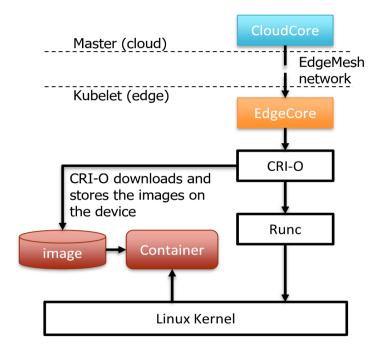
- There is considerable interest in open hardware architectures, covering the whole computing continuum spectrum from cloud to edge
- RISC-V architectures play an important role in this context for both academic and industrial product designs
- The potential of these architectures in the context of the computing continuum is untapped due to lack of software support
- We propose a port of the containerization and orchestration software stack on RISC-V, as well as in-depth analysis of the overhead characteristic of such a stack when compared to RISC-V

October 17, 2023


to Edge Continuur

KubeEdge and RISC-V

- For orchestration, we used KubeEdge instead of Kubernetes
- KubeEdge focuses towards IoT and Edge-Cloud computing continuum (with RISC-V on the edge) thanks to more efficient design
- KubeEdge interfaces with Kubernetes, but Kubernetes must still be used on the Cloud side
- Ideal for harsh environments


October 17, 2023

on Cloud to Edge Continuum

KubeEdge and RISC-V

- None of the software exists for RISC-V, so the complete software stack had to be adapted and recompiled
- Starting from the high-level runtimes, such as KubeEdge itself, down to the low-level software responsible for running containers, such as *runc*
- All dependencies and libraries also had to be adapted and recompiled

on Cloud to Edge Continuum

KubeEdge performance RISC-V vs ARM

- The platform was successfully ported
- To verify its performance, it was tested on a RISC-V board and a similar-class ARM board, configured with the same power target and the same number of CPU cores
- For the RISC-V architecture, we used the Monte Cimone cluster, which employes the SiFive HiFive Unmatched
- For the ARM architecture, we used the Nvidia Jetson Xavier

The Monte Cimone Server Blade hosts two SiFive HiFive Unmatched boards, each with a Freedom U740 SoC. It has a form factor of 4.44 cm (1 Rack-Unit) in height

eSAAM 2023 - Ludwigsburg, Germany

KubeEdge performance RISC-V vs ARM (cont'd)

- A wide number of benchmarks was used to verify the container overhead, using tests to analyze the following:
 - Memory bandwidth
 - Sysbench, Stream
 - Applications performance
 - Rodinia (compute benchmark), 7-Zip, x265 Encode/Decode, POVRay (ray-tracing), OpenSSL (hash/sign/verify/encrypt)
 - System performance
 - OsBench, IPCbench, Stress-ng

Department

of ENGINEERING FOR INNOVATION MEDICINE

Memory Bandwidth

- The system memory on RISC-V behaved better when containerized compared to ARM
- RISC-V: +0.4% ---- ARM: -3.8%

Suite	Test	RISC-V			ARM64			Unit
Suite		Native	KubeEdge	Overhead	Native	KubeEdge	Overhead	(▲▼)
Sysbench	CPU	$2.47 \pm 0.39\%$	$2.46 \pm 0.19\%$	-0.4%	$6.40 \pm 0.06\%$	$6.17 \pm 1.72\%$	-3.7%	event/s ▲
	Сору	$1294\pm 0.28\%$	$1274\pm2.19\%$	-1.5%	$22765\pm 0.51\%$	$20500\pm 0.15\%$	-10.0%	MiB/s ▲
Stream	Scale	$1079\pm 0.50\%$	$1096 \pm 1.01\%$	1.6%	$23929\pm 0.42\%$	$22229\pm 0.09\%$	-7.1%	MiB/s ▲
Stream	Add	$1181\pm 0.20\%$	$1180\pm 0.89\%$	-0.1%	$24866\pm0.10\%$	$24719\pm1.46\%$	-0.6%	MiB/s ▲
	Triad	$1165\pm 0.18\%$	$1191\pm 1.94\%$	2.2%	$24499\pm 0.25\%$	$25044\pm 0.16\%$	2.2%	MiB/s ▲
			Average:	0.4%		Average:	-3.8%	

October 17, 2023

M 2023

on Cloud to Edge Continuum

Applications performance

- The applications' performance on RISC-V, once again, behaved better when containerized compared to ARM, especially in OpenSSL
- RISC-V: -1.9% ---- ARM: -3.1%

Suite	Test	RISC-V			ARM64			Unit
Suite	icst	Native	KubeEdge	Overhead	Native	KubeEdge	Overhead	(▲▼)
Rodinia	LavaMD	$12298\pm 1.05\%$	$13462\pm 0.41\%$	-8.7%	$1731\pm 2.41\%$	$1742\pm 2.05\%$	-0.6%	s V
x265 3.4	Bos. 1080p	$150 \pm 0.00\%$	$140 \pm 0.00\%$	-6.7%	$1240\pm 0.00\%$	$1230\pm 0.24\%$	-0.8%	fps ▲
[1e-3]	Bos. 4K	$30\pm0.00\%$	$30\pm0.00\%$	0.0%	$340\pm0.00\%$	$330\pm0.00\%$	-2.9%	fps ▲
7-Zip	Comp.	$1782\pm 0.80\%$	$1805\pm 0.77\%$	1.3%	$7972 \pm 2.63\%$	$6983\pm 3.60\%$	-12.4%	MIPS 🔺
	Decomp.	$3433\pm 0.54\%$	$3430\pm 0.13\%$	-0.1%	$5921\pm1.36\%$	$5309\pm 1.10\%$	-10.3%	MIPS 🔺
POV-Ray	Trace	$2948 \pm 1.33\%$	$2948\pm1.79\%$	-0.0%	$541 \pm 2.38\%$	$541 \pm 2.38\%$	0.0%	s V
OpenSSL	SHA256	$66.1 \pm 0.38\%$	$63.1 \pm 5.89\%$	-4.7%	$1589.5\pm2.45\%$	$1593.1\pm0.69\%$	0.2%	MB/s ▲
	SHA512	$92.7 \pm 1.08\%$	$90.4 \pm 0.63\%$	-2.5%	$398.5 \pm 0.38\%$	$387.1 \pm 0.40\%$	-2.9%	MB/s ▲
	RSA4096_s	$41\pm0.00\%$	$42 \pm 0.73\%$	0.5%	$155 \pm 0.47\%$	$147\pm0.48\%$	-5.2%	sign/s ▲
	RSA4096_v	$3139\pm 0.28\%$	$3124\pm0.69\%$	-0.5%	$1101\pm 0.01\%7$	$10532\pm0.05\%$	-4.4%	verify/s ▲
	AES-128	$65.0 \pm 0.37\%$	$64.1 \pm 0.12\%$	-1.5%	$4964.8\pm 0.07\%$	$4866.4\pm 0.09\%$	-2.0%	MB/s ▲
	AES-256	$53.9 \pm 0.55\%$	$53.2 \pm 0.62\%$	-1.3%	$3677.2\pm0.01\%$	$4027.0\pm0.05\%$	9.5%	MB/s ▲
	ChaCha20	$231.1 \pm 0.27\%$	$227.3 \pm 0.09\%$	-1.7%	$2213.2\pm0.01\%$	$2080.9\pm 0.08\%$	-6.0%	MB/s ▲
	Poly1305	$168.0 \pm 0.26\%$	$165.7 \pm 0.33\%$	-1.4%	$1497.4\pm 0.04\%$	$1415.9\pm0.03\%$	-5.4%	MB/s
			Average:	-1.9%		Average:	-3.1%	

on Cloud to Edge Continuum

eSAAM 2023 - Ludwigsburg, Germany

System performance

Suite	Test	RISC-V			ARM64			Unit
Suite	rest	Native	KubeEdge	Overhead	Native	KubeEdge	Overhead	(▲▼)
	Create Files	$426 \pm 5.48\%$	$596 \pm 4.32\%$	-28.4%	$183 \pm 2.28\%$	$279 \pm 4.71\%$	-34.3%	μs
	∟ mount	-	$425 \pm 5.42\%$	0.2%	-	$190 \pm 3.64\%$	-3.7%	μs
	C. Thread	$197 \pm 2.15\%$	$212 \pm 0.28\%$	-7.1%	$136 \pm 2.27\%$	$171 \pm 2.06\%$	-20.6%	μs
OSBench	C. Processes	$402 \pm 2.37\%$	$452 \pm 2.47\%$	-10.9%	$262 \pm 1.59\%$	$272 \pm 1.05\%$	-3.7%	μs
	Launch Prog.	$618 \pm 1.07\%$	$673 \pm 0.23\%$	-8.2%	$924 \pm 0.71\%$	$818 \pm 1.32\%$	13.0%	μs
	Malloc	$1399\pm 0.43\%$	$1424\pm1.19\%$	-1.8%	$565 \pm 1.49\%$	$542\pm0.23\%$	4.2%	μs
IPC bench.	TCP Socket	$117705\pm 5.01\%$	$112507\pm14.08\%$	-4.4%	137 263 ± 2.35%	136 135 ± 0.99%	-0.8%	msg/s
	PIPE Un.	$270793\pm0.36\%$	$274776\pm1.96\%$	1.5%	$154689\pm 0.25\%$	$152937\pm0.38\%$	-1.1%	msg/s
	PIPE FIFO	$269931 \pm 1.24\%$	$266265\pm1.35\%$	-1.4%	$155666\pm 0.33\%$	$157966\pm 0.47\%$	1.5%	msg/s
	Unix Socket	$95177\pm2.17\%$	$95469\pm 0.94\%$	0.3%	$90560\pm 1.13\%$	$92266\pm 1.37\%$	1.9%	msg/s
Stress-ng	Mutex	$158964\pm2.16\%$	$135805\pm 0.52\%$	-14.6%	$57472\pm4.30\%$	$56235\pm2.49\%$	-2.2%	ops/s
	Malloc	$99067\pm0.17\%$	$97948\pm0.98\%$	-1.1%	$54320\pm1.16\%$	$52001\pm0.22\%$	-4.3%	ops/s
	Forking	$1851\pm2.34\%$	$2020\pm1.98\%$	9.1%	$1601\pm 3.07\%$	$1684\pm12.59\%$	5.2%	ops/s
	Pthread	$2690\pm 1.07\%$	$2340\pm 0.53\%$	-13.0%	$3633\pm2.06\%$	$3473\pm 0.91\%$	-4.4%	ops/s
	CPU cache	$23254\pm 4.07\%$	$23549\pm 8.91\%$	1.3%	$182042\pm1.59\%$	$177345\pm 1.07\%$	-2.6%	ops/s
	Semaphores	$845130\pm2.05\%$	$793821\pm2.37\%$	-6.1%	$201253\pm9.87\%$	$194155\pm5.54\%$	-3.5%	ops/s
	Matrix Math	$518\pm0.22\%$	$507 \pm 0.17\%$	-2.1%	$3698\pm 0.15\%$	$3770\pm 0.05\%$	1.9%	ops/s
	Vector Math	$348 \pm 0.33\%$	$354 \pm 0.02\%$	1.8%	$6484\pm 0.53\%$	$7084\pm0.69\%$	9.3%	ops/s
	Functions	$2294\pm 0.36\%$	$2249\pm 0.36\%$	-2.0%	$18766\pm2.58\%$	$16004 \pm 2.43\%$	-14.7%	ops/s
	Cntx switch	$84110\pm4.90\%$	$66082\pm5.53\%$	-21.4%	$47\ 990\ \pm\ 2.48\%$	$47865\pm 2.39\%$	-0.3%	ops/s
L			Average:	-5.4%		Average:	-2.9%	7

There is a quite significant difference in the system-level performance

Parallel Computi

- Especially when • considering the context switch duration on **RISC-V** when containerized
- To understand this extreme overhead, we performed some additional analysis

October 17, 2023

eSAAM 2023

on Cloud to Edge Continuum

System performance (cont'd)

- There is a clear difference in the context switch performance, which might be caused by two factors:
 - 1) The container data structures themselves inside the Linux kernel
 - 2) Some part of the software stack for containerization is not optimized on RISC-V
- Considering that all system calls are intercepted by the container runtime, we manually created a container without container runtime, this should differentiate between the two overhead cases
 - a) Overhead -> container data structures
 - b) No overhead -> container runtime
- If the "manual" containerization works, the container should behave normally

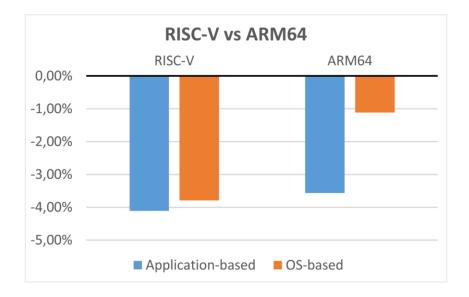
October 17, 2023

System performance (cont'd)

- We impose a limit of 128MB on the container and run the context switch benchmark again
- If the container is killed once it overflows 128MB, then the container is behaving normally, and we can verify the context switch time
- We also ran the benchmark natively on the system, without containers, as ground truth

	Native	Manual	KubeEdge
Syscall time	192.18 ns	191.72 ns	206.48 ns
OOM kill	No	Yes	Yes

• The manual container is working and has no overhead, thus, the container runtime is causing the additional overhead


October 17, 2023

Summary

- Performance of RISC-V containerization is very good for compute-intensive applications
- Applications that make heavy use of system calls and context switches could become significantly slower when containerized, compared to ARM
- Overall, the performance delta between ARM and RISC-V is comparable

October 17, 2023

on Cloud to Edge Continuum

Conclusions

- We ported the containerization and orchestration stack to RISC-V, paving the way for Edge-Cloud computing continuum on an entirely new architecture
- We verified the software readiness of such an architecture for containerization and found that some optimization is missing in the container runtime for system calls and context switching
- The software stack and installation guide is openly available at: gitlab.com/parco-lab/kubeedge-v

October 17, 2023

to Edge Continuum

