

FlexConnect: Mobile Computational Offloading

Alexander Droob, Daniel Morratz, Frederik Langkilde Jakobsen, Jacob Carstensen, Magnus Mathiesen, Rune Bohnstedt, Michele Albano (Aalborg University)

Sergio Moreschini (Tampere University)

Davide Taibi (University of Oulu)

Context

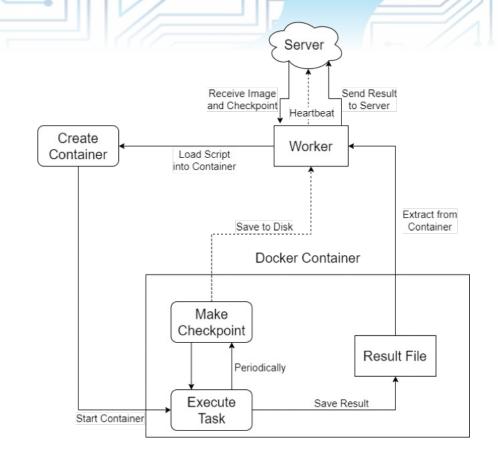
- Makerspaces provide AI-based computational support
- Aalborg requires makerspace to
 - Shut-down EVERYTHING when closed
 - Delete data before closing

"How can we provide computational power to its users at various locations without loss of progress using computational offloading?"

How to develop an edge-based system that allows computational tasks to be executed and interrupted/resumed from edge nodes without loss of progress.

Requirements – User and App

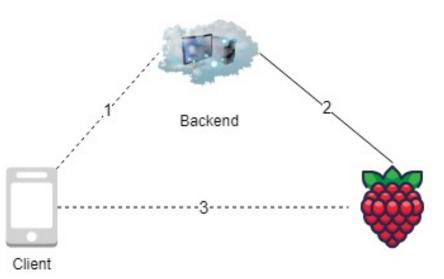
- A user can:
 - Upload a job to the system
 - Download the result from their job
 - Authenticate
 - Can see their job history
 - See the status of their job
 - Can pause and resume a running job
 - See the provider locations,
 - See the distance to provider locations.
- The application implements a user interface.



- The system and application are connected wirelessly
- The system can:
 - Detect nearby users
 - Has a queuing system for jobs
 - Can handle data-intensive jobs
 - Will notify a user when a job is complete
 - The system must be also secure

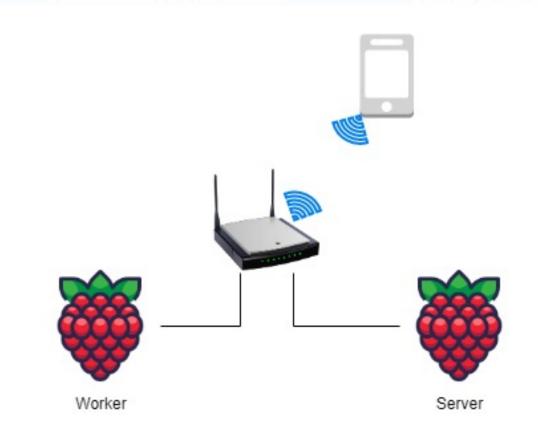
Proposed Solution - Workrs

esaam 2023 on Cloud to Edge Continuum

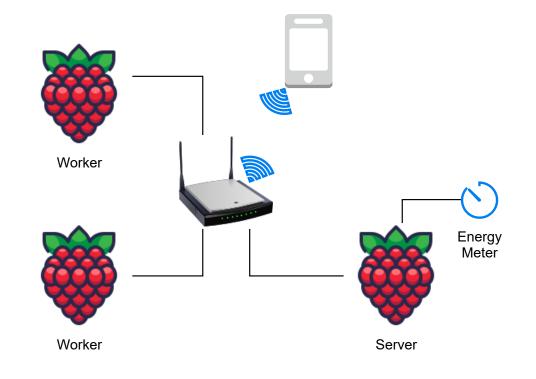

- Once the Job is received the worker creates the container
- Execute the tasks while:
 - Creating checkpoints
 - Send heartbeat to the orchestrator
- Once the process is done send the result to the orchestrator, which sends it to the server.

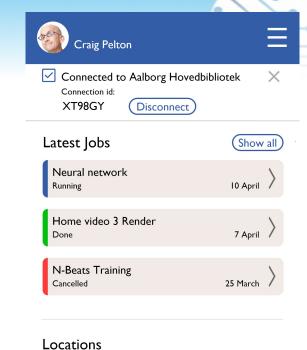
Proposed Solution - Communication

- Initial connection to the backend: used for business logic such as user information, jobs overview, and starting or stopping jobs
- 2. Workers' connection to the backend: used for both logic and data flow connection
- 3. Direct connection from the users' mobile device to the worker: used for data flow, internet to the users' device.


Implementation

- 2x Raspberry Pi 4b (4GB Ram)
- 1x Internet Router/Network Switch
- 1x Mobile Android Device
- Raspberry Pi worker unit and FTP server
- Raspberry Pi backend and message broker
- Mobile device client unit
- In the prototype implemented instead of using a WebDAV connection, an FTP solution has been implemented.


Testing Prototype



- 2x Raspberry Pi 4b as workers
- 1x Raspberry Pi 4b as Backend and Coordinator
- 1x Internet Router/Network Switch
- 1x Mobile Android Device
- 1x Energy meter to measure energy consumption of checkpointing on the system.

The application Prototype

Testing

- **eSAAM 2023** on Cloud to Edge Continuum

- Test script which multiplied matrices, simulating tasks performed by the worker unit.
- A calculated failure time was sent to the worker after which the worker would emulate a hardware failure.
 - Calculated through a semirandom calculation based on a given failure rate µ.

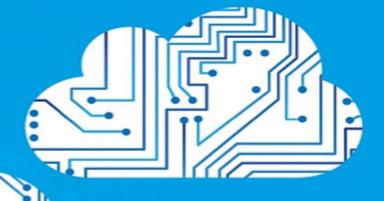
	Failure rate μ	Number of checkpoints
1.	0.0001	0
2.	0.0001	15
3.	0.0005	0
4.	0.0005	1
5.	0.0005	15
6.	0.003	0
7.	0.003	5
8.	0.003	15
9.	0.0131	0
10.	0.0131	11
11.	0.0131	15

Table 1: Test cases for the automatic testing system.

Conclusion

- Design and implementation of a mobile computational offloading system
- Ability to checkpoint user computations and resume progress at a later point.
- Users can divide their computational work into smaller chunks.
- MVP prototype created.

Future Work



- Implementation of missing features:
 - Queuing system
 - Increased security (Encryption)
 - Docker validation
 - Systematic testing process (ex. Stress test)
- GPU support
- Support for more workload types
- Support for Federated Learning

on Cloud to Edge Continuum

Sponsored by:

Organized by:

