

# Unikernels Motivations, Benefits and Issues: A Multivocal Literature Review

NABIL EL IOINI, University of Nottingham Malaysia, Malaysia AYOUB EL MAJJODI, University of Bergen, Norway DAVID HÄSTBACKA, Tampere University, Finland TOMAS CERNY Davide Taibi (University of Oulu)

Ludwigsburg, Germany

Oct. 17, 2023



• Edge Computing Require Lightweight containers

• Unikernels can be a potential solution







Highly-specialized single-address space, immutable and lightweight images. Linking an application only with its necessary libraries at compile-time All the services, from device drivers to schedulers moved to the network stack

Two categories

- Language-based: Tied to single technology
- POSIX-like: single address space and a single privilege level





**Virtual Machines** 

Containers

### Unikernels

**esaam 202**8

on Cloud to Edge Continuum



- What are the motivations for the adoption of Unikernels?
- What benefits are achieved by using Unikernels?
- What are the major issues of Unikernels

# Method





Analysis of Grey Literature and Peer-Reviewed Literature

## Search String:

unikernel\* AND (motivations OR benefits OR problem\* OR issue\* OR "operating system").

- **PR:** ACM digital Library, IEEEXplore Digital Library, Scopus, Springer link
- **GL:** Google Search, Twitter, Search, Reddit Search, Medium Search, LinkedIn Search, Quora, Hacker News Algolia Search

# Method



Snowballing, Quality Assessment of GL, Inter-rater reliability, Open/Selective Coding...

## **Results**:

590 initial sources

- Inclusion/Exclusion:
  - 528 excluded
  - 62 included
    - 40 (64.51 %) peer-reviewed-conference papers
    - 22 (35.49 %) grey literature

Unikernels Results





| Unikernel Frame- | Targets               | Programming Languages         | Project Status                               | # Sources |
|------------------|-----------------------|-------------------------------|----------------------------------------------|-----------|
| work             |                       |                               |                                              |           |
| HermiTux         | Xen, KVM              | C, C++, Fortan, Python        | 4 active contributors                        | 2         |
| Lupine-linux     | KVM                   | language independent          | 4 active contributors                        | 1         |
| Rumprun          | Xen, KVM              | C, C++, Java, Go, JavaScript, | last commit was on May 11, 2020, 25 contrib- | 16        |
|                  |                       | Node, Python, Ruby            | utors                                        |           |
| IncludeOS        | KVM, ESXi, OpenStack  | C++                           | last commit was on May 11, 2020, 60 contrib- | 10        |
|                  |                       |                               | utors                                        |           |
| MirageOS         | KVM, Xen              | OCaml                         | last commit was on December, 2020, 52 con-   | 16        |
|                  |                       |                               | tributor                                     |           |
| OSv              | VirtualBox, ESXi, KVM | Java, C, C++, Node            | very active project with 103 contributor and | 11        |
|                  |                       |                               | +44 releases                                 |           |
| RustyHermit      |                       |                               | active 9 contributors                        | 1         |
| Hermitcore       | KVM                   | C, C++, Fortran, Go           | active 10 contributors                       | 5         |
| ClickOS          | Xen                   | C++                           | supported by NEC                             | 3         |
| MiniOS           | Xen                   | C++                           | supported by XEN project, active project     | 2         |
| Ling             | Xen                   | Erlang                        | has not been updated since 2015              | 1         |
| HaLVM            | Xen                   | Haskell                       | has not been active since 2018               | 1         |

Table 4. Unikernel Frameworks

8/14

Ludwigsburg, Germany









- Performance
- Supporting Technology
- Resource Optimization
- Service Modularity
- Service Isolation
- Reduced Costs
- Personal Motivations



- Resource Optimization ↑
- Security ↓
- Service Isolation
- Deployment
- Supporting Technologies
- Reduced Costs
- Service Modularity



















#### • Technologies

- Lack of Multi-Processing
- Development Process
- Vendor Lock-in
- Compatibility
- Management
- Security

#### • Resource Utilization

- Throughput is slightly higher than containers due to the lack of a userspace copy
- Transmission performance is lower due to higher CPU usage









- Security threats are not clear
- Not clear when unikernels should be used
- Unikernels management not clear
  - Do they need a separate management layer?
  - Do we need a K8 like platform?









- Promising technology
- Multiple implementations
- Still in a early development stage
- Not easy to use and manage

